Diverse distribution of tyrosine receptor kinase B isoforms in rat multiple tissues
نویسندگان
چکیده
Tyrosine receptor kinase B (TrkB), a receptor for brain-derived neurotrophic factor and neurotrophin-3, includes the alternatively spliced three isoforms specifically in rats. Each isoform, full length TrkB (TrkB FL), truncated TrkB type-1 (TrkB T1) and type-2 (TrkB T2), seems to mediate diverse cellular function. Some studies suggest that TrkB plays a key role in both neural and non-neural systems. In the present study, we examined mRNA and protein expression profile of three TrkB isoforms in normal adult rat multiple tissues. TrkB FL mRNA and protein were both highly expressed exclusively in brain. While TrkB T1 mRNA was highly expressed exclusively in brain, glycosylated TrkB T1 protein was expressed in brain and heart. TrkB T2 mRNA level in brain was the highest. In brain, TrkB FL mRNA expression was higher in cerebral cortex, but lower in brainstem. TrkB T1 mRNA expression was higher in hypothalamus, but lower in cerebellum. TrkB T2 mRNA expression was higher in cerebral cortex and cerebellum, but lower in brainstem. The present study for the first time clarified diverse distribution of three TrkB isoforms in rat multiple tissues and could serve as a useful resource for understanding the physiology and pathophysiology of mammals including human via comparing the expression pattern of TrkB isoforms.
منابع مشابه
FMS-like Tyrosine Kinase-3 Mutation in a Child with Standard-risk ALL and Normal Karyotype
FMS-like tyrosine kinase-3 is a receptor tyrosine kinase expressed by immature hematopoietic cells and is important for the normal development of stem cells and the immune system. Mutations of FMS-like tyrosine kinase-3 have been detected in about 30% of patients with acute myelogenous leukemia and a small number of patients with acute lymphoblastic leukemia. The FMS-like tyrosine kinase-3 muta...
متن کاملDevelopmental expression of tyrosine kinase b in rat vestibular nuclear neurons responding to horizontal and vertical linear accelerations
Brain-derived neurotrophic factor (BDNF) is known to be crucial for the development of peripheral vestibular neurons. However, the maturation profile of the BDNF signal transducing receptor, tyrosine kinase B (TrkB) in functionally activated otolith-related vestibular nuclear neurons of postnatal rats remains unexplored. In the present study, conscious Sprague-Dawley rats (P4 to adult) were sub...
متن کاملDevelopmental expression of tyrosine kinase b in rat vestibular nuclear neurons responding to horizontal and vertical linear accelerations
Brain-derived neurotrophic factor (BDNF) is known to be crucial for the development of peripheral vestibular neurons. However, the maturation profile of the BDNF signal transducing receptor, tyrosine kinase B (TrkB) in functionally activated otolith-related vestibular nuclear neurons of postnatal rats remains unexplored. In the present study, conscious Sprague-Dawley rats (P4 to adult) were sub...
متن کامل2D-QSAR and docking studies of 4-anilinoquinazoline derivatives as epidermal growth factor receptor tyrosine kinase inhibitors
Introduction: Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor derivatives play an important role in the treatment of cancer. We aim to construct 2D-QSAR models using various chemometrics using 4-anilinoquinazoline-containing EGFR TKIs. In addition, the binding profile of these compounds was evaluated using a docking study. Materials and Methods: In this study, 122 compounds of...
متن کاملVEGF-A isoforms program differential VEGFR2 signal transduction, trafficking and proteolysis
Vascular endothelial growth factor A (VEGF-A) binding to the receptor tyrosine kinase VEGFR2 triggers multiple signal transduction pathways, which regulate endothelial cell responses that control vascular development. Multiple isoforms of VEGF-A can elicit differential signal transduction and endothelial responses. However, it is unclear how such cellular responses are controlled by isoform-spe...
متن کامل